4.8 Article

Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one dimensional NiMoO4 nanorods

期刊

JOURNAL OF POWER SOURCES
卷 277, 期 -, 页码 350-359

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2014.11.137

关键词

Methanol electrooxidation; Non-noble metals; Electrocatalysts; DMFC

向作者/读者索取更多资源

Non-precious NiMoO4 nanorods with carbon and graphene have been designed for methanol oxidation via one pot hydrothermal method. The physicochemical and electrocatalytic features of these catalysts are characterized. Among the three catalysts, carbon modified NiMoO4 shows an enhanced catalytic activity in terms of current density, onset potential, cyclic stability and high tolerance to intermediate towards methanol electro-oxidation. Moreover, the NiMoO4/C catalyst delivers a current density of 49 mA cm(-2) at low onset potential of 0.45 V (vs. Hg/HgO) in 1 M KOH and 2.0 M methanol electrolyte. This greater electrocatalytic activity is attributed to the unique 1D microstructure of NiMoO4 nanorods with well distributed carbonaceous material, which enhances the efficient transport of electron/ion kinetics at the electrode and electrolyte interfaces. From this observation, it is concluded that the carbon modified NiMoO4 nanorods could be a promising alternate non-noble electrocatalysts for direct methanol fuel cell (DMFC) applications. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据