4.6 Review

How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

期刊

ANNALS OF BOTANY
卷 115, 期 3, 页码 509-528

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcu264

关键词

Antioxidants; glycinebetaine; halophytes; metal distribution; metallothioneins; mucilage; osmoprotectants; phytoextraction; phytochelatins; phytoremediation; phytostabilization; ROS scavenging; salt marsh species

资金

  1. European Union [316304]

向作者/读者索取更多资源

Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据