4.8 Article

Computational models for simulation of a lithium-ion battery module specimen under punch indentation

期刊

JOURNAL OF POWER SOURCES
卷 273, 期 -, 页码 448-459

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2014.09.072

关键词

Lithium-ion battery module; Representative volume element; Compression test; Punch test; Lithium-ion battery simulation; Computational model

向作者/读者索取更多资源

In this paper, macro homogenized material models are adopted to simulate an in-plane constrained punch indentation test of a small-scale lithium-ion battery module specimen. The macro material models are based on the compressive stress strain curves obtained from representative volume element (RVE) module specimens under in-plane constrained compression tests. The ABAQUS implicit solver is used for simulation of the punch test. The hyperfoam and the crushable foam material models in ABAQUS are adopted to fit the nominal stress strain curves of the module RVE specimens under in-plane constrained compression. The load displacement responses and the deformation patterns of the module specimen from the finite element analyses of the punch test based on the hyperfoam and crushable foam material models compare fairly well with the experimental results. However, the initial yielding and the corresponding unloading of the load displacement curves of the module specimen due to micro buckling could not be modeled distinctively by the macro homogenized models. The computational results show that the material models available in commercial finite element software can be used to reasonably model lithium-ion battery modules under non-uniform compression loading conditions. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据