4.7 Article

The influence of gas radiation on the thermal behavior of a 2D axisymmetric turbulent non-premixed methane-air flame

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 79, 期 -, 页码 405-414

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2013.12.037

关键词

Radiation heat transfer; WSGG model; Combustion; Turbulent non-premixed flames; Turbulence-radiation interactions

资金

  1. CNPq (Brazil) [304728/2010-1, 473899/2011-6]

向作者/读者索取更多资源

This paper presents a study of the effect of thermal radiation in the simulation of a turbulent, non-premixed methane-air flame. In such a problem, two aspects need to be considered for a precise evaluation of the thermal radiation: the turbulence-radiation interactions (TRI), and the local variation of the radiative properties of the participating species, which are treated here with the weighted-sum-of-gray-gases (WSGG) model based on newly obtained correlations from HITEMP2010 database. The chemical reactions rates were considered as the minimum values between the Arrhenius and Eddy Break-Up rates. A two-step global reaction mechanism was used, while the turbulence modeling was considered via standard k-epsilon model. The source terms of the energy equation consisted of the heat generated in the chemical reaction rates as well as in the radiation exchanges. The discrete ordinates method (DOM) was employed to solve the radiative transfer equation (RTE), including the TRI. Comparisons of simulations with/without radiation (which in turn was solved with/without TRI) demonstrated that the temperature, the radiative heat source, and the wall heat flux were importantly affected by thermal radiation, while the influence on species concentrations proved to be negligible. Inclusion of thermal radiation led to results that were closer to experimental data available in the literature for the same test case considered in this paper. Inclusion of TRI improved the agreement, although in a smaller degree. The main influence of TRI was mainly on global results, such as the peak temperature and the radiant fraction. The results show the importance of thermal radiation for an accurate prediction of the thermal behavior of a combustion chamber. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据