4.7 Article

Thermodynamic analysis of a combined chemical looping-based trigeneration system

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 85, 期 -, 页码 477-487

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2014.06.011

关键词

Chemical looping; Gasification; Hydrogen; Trigeneration; CO2 capture; Energy; Exergy; Efficiency

向作者/读者索取更多资源

Energy and exergy analyses of a newly developed three-reactor chemical looping hydrogen generation process are performed for trigeneration of power, hydrogen, and heating. The present integrated system consists of an (a) air separation unit (ASU), (b) gasification sub-system, (c) chemical looping hydrogen generation unit in connection with SOFC assisted gas turbine (CLHG-SOFC/GT), (d) an extended heat recovery steam generation unit (HRSG) to supply heat for Steam cycle, organic Rankine cycle and space heating, (e) a two stage steam Rankine cycle (SRC) for power generation with reheat and regeneration, and (f) an organic Rankine cycle (ORC) to produce power. The gasified coal is separated and purified in quench chamber and syngas cleaner; CO2 and H-2 are generated from fuel and steam reactors of chemical looping unit, and both are then compressed after separated from water and ready for transportation. A specified amount of H-2 produced from steam reactor is also used to produce electricity with SOFC/GT. A comprehensive parametric study is performed, and the effects of multi-generation and system integration, environmental conditions, and system parameter variations on overall efficiencies are investigated. Overall electrical, hydrogen, energy and exergy efficiencies are comparatively determined for different cases. Overall energy and exergy efficiencies of proposed system are found to be 56.9% and 45.05%, respectively, with a total exergy destruction rate of 15,421 kW. The highest exergy destruction occurs in the gasifier and CLHG due to high temperature chemical processes. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据