4.7 Article

Reactivity of dolomite in water-saturated supercritical carbon dioxide: Significance for carbon capture and storage and for enhanced oil and gas recovery

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 65, 期 -, 页码 564-573

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2012.07.024

关键词

Carbon capture and storage; Enhanced oil recovery; Enhanced gas recovery; Fluid-rock interactions; Supercritical carbon dioxide; Mineralization

资金

  1. US Department of Energy [DE-FE0002142]
  2. UW School of Energy Resources

向作者/读者索取更多资源

Carbon dioxide injection in porous reservoirs is the basis for carbon capture and storage, enhanced oil and gas recovery. Injected carbon dioxide is stored at multiple scales in porous media, from the pore-level as a residual phase to large scales as macroscopic accumulations by the injection site, under the caprock and at reservoir internal capillary pressure barriers. These carbon dioxide saturation zones create regions across which the full spectrum of mutual CO2-H2O solubility may occur. Most studies assume that geochemical reaction is restricted to rocks and carbon dioxide-saturated formation waters, but this paradigm ignores injection of anhydrous carbon dioxide against brine and water-alternating-gas flooding for enhanced oil recovery. A series of laboratory experiments was performed to evaluate the reactivity of the common reservoir mineral dolomite with water-saturated supercritical carbon dioxide. Experiments were conducted at reservoir conditions (55 and 110 degrees C, 25 MPa) and elevated temperature (220 degrees C, 25 MPa) for approximately 96 and 164 h (4 and 7 days). Dolomite dissolves and new carbonate mineral precipitates by reaction with water-saturated supercritical carbon dioxide. Dolomite does not react with anhydrous supercritical carbon dioxide. Temperature and reaction time control the composition, morphology, and extent of formation of new carbonate minerals. Mineral dissolution and re-precipitation due to reaction with water-saturated carbon dioxide may affect the contact line between phases, the carbon dioxide contact angle, and the relative permeability and permeability distribution of the reservoir. These changes influence fundamental properties of hysteresis of drainage and imbibition cycles, rock wettability, and capillary pressure. The efficacy of physical carbon dioxide trapping mechanisms, integrity of caprock, and injectivity of a carbon dioxide storage reservoir as well as the injectivity and production rate of an enhanced oil recovery operation may be affected. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据