4.8 Article

Electrochemical performance and capacity degradation mechanism of single-phase La-Mg-Ni-based hydrogen storage alloys

期刊

JOURNAL OF POWER SOURCES
卷 300, 期 -, 页码 77-86

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2015.09.058

关键词

Metal hydride electrode; Single phase; Subunit structure; Electrochemical property; Cycling stability

资金

  1. National Natural Science Foundation of China [51571173, 51171165, 21303157]
  2. Natural Science Foundation of Hebei Province [B2014203114]

向作者/读者索取更多资源

La-Mg-Ni-based hydrogen storage alloys are a promising candidate for the negative electrode materials of nickel metal hydride batteries. However, their fast capacity degradation hinders them from more extensive application. In this study, the electrochemical performance and capacity degradation mechanism of single-phase La2MgNi9, La3MgNi14 and La4MgNi19 alloys are studied from the perspective of their constituent subunits. It is found that the rate capability and cycling stability of the alloy electrodes increase with higher [LaNi5]/[LaMgNi4] subunit ratio, while the discharge capacity shows a reverse trend. Degradation study shows that the inter-molecular strains in the alloys are the main reason that leads to the fast capacity degradation of La-Mg-Ni-based alloys. The strains are caused by the difference in the expansion/contraction properties between [LaNi5] and [LaMgNi4] subunits during charge/discharge which is mainly observed in the H-dissolved solid solution instead of hydride. It is also found that the strains can be relieved by adjusting [LaNi5]/[LaMgNi4] subunit ratio of the alloys, thus achieving less pulverization and oxidation, and better cycling stability. We expect our findings can inspire new thoughts on improving the electrochemical performance of La-Mg-Ni-based alloys by tuning their superlattice structures. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据