4.7 Article

A study of wind and buoyancy driven flows through commercial wind towers

期刊

ENERGY AND BUILDINGS
卷 43, 期 7, 页码 1784-1791

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2011.03.022

关键词

Wind tower; CFD; Buoyancy; Urban environment; Indoor ventilation

向作者/读者索取更多资源

Commercial wind towers have been the focus of intensive research in terms of their design and performance. There are two main forces which drive the flow through these devices, external wind and buoyancy due to temperature difference. This study examines the relationship between these two forces and the indoor ventilation rate achieved. The work uses computational fluid dynamics (CFD) modeling to isolate and investigate the two forces and draw comparisons. The study found that as expected the external driving wind is the primary driving force providing 76% more internal ventilation than buoyancy driven flow, which is deemed secondary. Moreover the study found that the effect of buoyancy is insignificant without an external airflow passage other than the wind tower itself. The addition of an external airflow passage such as a window in combination with buoyancy force increased the indoor ventilation by 47%. Therefore the careful positioning of windows in conjunction with internal heat source has the potential to overcome the lack of external wind driven forces in dense urban environments. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据