4.7 Article

Development and performance evaluation of natural thermal-insulation materials composed of renewable resources

期刊

ENERGY AND BUILDINGS
卷 43, 期 9, 页码 2518-2523

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2011.06.012

关键词

Thermal insulating material; Jute; Flax; Hemp

资金

  1. AKTION
  2. [MSM 0021630511]

向作者/读者索取更多资源

Because energy efficiency in buildings will be evaluated not only based upon heating demand, but also according to the primary energy demand, the ecological properties of the building materials for the whole assessment has become essential. The demand for green building materials is rising sharply, especially insulating materials from renewable resources. The application of natural materials has become increasingly important as a consequence of the increasing need to conserve energy, use natural materials, incorporate architecture and construction into sustainable development processes, and the recently promulgated discussions on appropriate disposal of used insulation materials such as polystyrene (EPS). Due to the fact that natural materials are more sensitive to moisture, decomposition factors such as temperature, material moisture content, attacks by microorganisms, and possible decomposition of the material or shorter durability, it is necessary to evaluate the degradation rate of built-in materials and also determine their real in situ hygrothermal properties according to their moisture content, and volume changes. This paper describes the results of a research project carried out at the Vienna University of Technology and Brno University of Technology. The objective is to use jute, flax, and hemp to develop a new insulating material from renewable resources with comparable building physics and mechanical properties to commonly used insulations materials. All input components are varied in the tests. The impact of moisture content changes in relation to the rate of change of other properties was the focus of the investigation. The tests results show that the correct combination of natural materials is absolutely comparable with convectional materials. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据