4.7 Article

Improvement of solar-electric compression refrigeration system through ejector-assisted vapour compression chiller for space conditioning in subtropical climate

期刊

ENERGY AND BUILDINGS
卷 43, 期 12, 页码 3383-3390

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2011.08.038

关键词

Solar air-conditioning; Solar-electric refrigeration; Ejector; Refrigerant; Vapour compression cycle

资金

  1. City University of Hong Kong [7002555]

向作者/读者索取更多资源

In this study, improvement was made for the solar-electric compression refrigeration system by incorporating the ejector design to a conventional vapour compression chiller within the system. Through year-round dynamic simulation, the performances of the ejector-assisted vapour compression chiller (EAVCC) were evaluated under the intermittent and changing supply of solar energy in the subtropical climate. In addition, the effect of three common refrigerants, R22, R134a and R410A on the EAVCC was assessed and compared. It was found that the coefficient of performance of the chiller was increased and the total primary energy consumption of the system was decreased for all the three refrigerants, in which the degree of enhancement from R134a was the most significant. It was also noted that the effect of R410A on EAVCC was not apparent, and the overall system energy improvement was marginal. With appropriate ejector design and refrigerant selection of the solar-electric compression refrigeration system, the reduction potential of year-round primary energy consumption could be more than 5%. This would be certainly helpful in promoting the application of solar air-conditioning for building use in the subtropical climate. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据