4.8 Article

Parameter estimation of an electrochemistry-based lithium-ion battery model

期刊

JOURNAL OF POWER SOURCES
卷 291, 期 -, 页码 215-224

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2015.04.154

关键词

Battery; Homotopy; Li-ion; Optimization; Parameter estimation; Parameter identification

资金

  1. NSERC/Toyota/Maplesoft Industrial Research Chair Program

向作者/读者索取更多资源

Parameters for an electrochemistry-based Lithium-ion battery model are estimated using the homotopy optimization approach. A high-fidelity model of the battery is presented based on chemical and electrical phenomena. Equations expressing the conservation of species and charge for the solid and electrolyte phases are combined with the kinetics of the electrodes to obtain a system of differential-algebraic equations (DAEs) governing the dynamic behavior of the battery. The presence of algebraic constraints in the governing dynamic equations makes the optimization problem challenging: a simulation is performed in each iteration of the optimization procedure to evaluate the objective function, and the initial conditions must be updated to satisfy the constraints as the parameter values change. The e-embedding method is employed to convert the original DAEs into a singularly perturbed system of ordinary differential equations, which are then used to simulate the system efficiently. The proposed numerical procedure demonstrates excellent performance in the estimation of parameters for the Lithium-ion battery model, compared to direct methods that are either unstable or incapable of converging. The obtained results and estimated parameters demonstrate the efficacy of the proposed simulation approach and homotopy optimization procedure. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据