4.7 Article

Pyrolytic Reactions of Lignin within Naturally Occurring Plant Matrices: Challenges in Biomass Pyrolysis Modeling Due to Synergistic Effects

期刊

ENERGY & FUELS
卷 28, 期 11, 页码 6918-6927

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ef501459c

关键词

-

向作者/读者索取更多资源

Systematically larger char yields were observed from the pyrolysis of chemically isolated lignins, compared to expected yields from the pyrolysis of lignins embedded in plant material. Naturally occurring lignins are known to be intermeshed with other plant constituents within the composite matrices of lignocellulosic biomass. An attempt was made to simulate their behavior by pyrolyzing pellets prepared from mixtures of lignin and cellulose powders. However, the results gave char yield trends that did not conform to trends observed when pyrolyzing plant derived biomass. These findings are interpreted in terms of entirely different reaction pathways operating when lignins are pyrolyzed within naturally occurring biomass, compared to pure lignins or composite particles made from mixtures of fine powders. It appears that char yield trends from the pyrolysis of lignocellulosic biomass are closely linked to the detailed morphology, as well as the chemical makeup, of the highly oxygenated plant derived material within which the lignin components of plants are embedded. The observed sensitivity of reaction pathways to plant specific structural (morphological) features poses added challenges in formulating realistic ab initio mathematical models for predicting the pyrolysis chemistry of lignocellulosic biomass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据