4.7 Article

Heavy Petroleum Composition. 3. Asphaltene Aggregation

期刊

ENERGY & FUELS
卷 27, 期 3, 页码 1246-1256

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ef3018578

关键词

-

资金

  1. National Science Foundation (NSF) Division of Materials Research [DMR-06-54118]
  2. Shell Global Solutions
  3. Nalco (an Ecolab Company)
  4. Florida State University
  5. State of Florida

向作者/读者索取更多资源

Molecular characterization of asphaltenes by conventional analytical techniques is a challenge because of their compositional complexity, high heteroatom content, and asphaltene aggregate formation at low concentrations. Thus, most common characterization techniques rely on bulk properties or solution-phase behavior (solubility). Proposed over 20 years ago, the Boduszynski model proposes a continuous progression in petroleum composition (molecular weight, structure, and heteroatom content) as a function of the atmospheric equivalent boiling point. Although exhaustive detailed compositional analysis of petroleum distillates validates the continuum model, the available compositional data from asphaltene fractions supports the extension of the continuum model into the nondistillables only indirectly. Asphaltenes, defined by their insolubility in alkane solvents, accumulate in high-boiling fractions and form stable aggregate structures at low parts per billion (ppb) concentrations, far below the concentration required for most mass analyzers. Here, we present direct mass spectral detection of stable asphaltene aggregates at lower concentrations than previously published and observe the onset of asphaltene nanoaggregate formation by time-of-flight mass spectrometry (TOF-MS). We conclude that a fraction of asphaltenes must be present as nanoaggregates (not monomers) in all atmospheric pressure and laser-based ionization methods. Thus, those methods access a subset of the asphaltene continuum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据