4.7 Article

Heavy Petroleum Composition. 4. Asphaltene Compositional Space

期刊

ENERGY & FUELS
卷 27, 期 3, 页码 1257-1267

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ef301747d

关键词

-

资金

  1. National Science Foundation (NSF) Division of Materials Research [DMR-0654118]
  2. State of Florida

向作者/读者索取更多资源

Asphaltenes and maltenes are defined operationally by solubility (in, e.g., heptane). Asphaltenes self-associate in solution and form putative nanoaggregates composed of approximately 6-10 asphaltene monomers per subunit. Bulk measurements indicate that asphaltenes are more aromatic than maltenes and contain more heteroatoms and metals (nitrogen, sulfur, oxygen, nickel, and vanadium). Numerous direct imaging, molecular diffusion, and mass spectral results agree that asphaltenes and maltenes are defined by similar, overlapped carbon number ranges, drastically restricting the acceptable carbon number and aromaticity compositional space for asphaltene compounds. Thus, when viewed by a plot of aromaticity versus carbon number for a given heteroatom class, asphaltenes must occupy different compositional space than maltenes because they share the same carbon number range but differ in bulk aromaticity and solution phase behavior. Boduszynski's work supported overlapping asphaltene/maltene molecular weights, and he proposed that high boiling does not necessitate high molecular weight [Boduszynski, M. M. Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400 degrees F (760 degrees C). Energy Fuels 1987, 1 (1) 2-11] However, his limited mass spectral resolution precluded direct molecular level confirmation. Current mass spectral results combined with results published in parts 1 (10.1021/ef100149n), 2 (10.1021/ef1001502), and 3 (10.1021/ef3018578) of this series provide the basis for a continuum in petroleum structure and composition in support of the Boduszynski model and confirm that asphaltene molecules share the same carbon number range with their maltene counterparts but are simply more aromatic. Thus, the compositional space for maltenic and monomeric asphaltene species is now known. Part 3 (10.1021/ef3018578) provided evidence for asphaltene aggregate formation at concentrations below that required for most mass spectral analyses, suggesting that, at these concentrations, the majority of asphaltenes are locked in aggregate structures and, therefore, undetected as monomers. Here, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results confirm that asphaltenes and maltenes of the same heteroatom class exhibit higher aromaticity than maltenes of the same carbon number, limited by the highest possible aromaticity for a stable planar aromatic structure, and clearly differentiate asphaltene and maltene monomeric molecular compositions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据