4.7 Article Proceedings Paper

Application of Saturates, Aromatics, Resins, and Asphaltenes Crude Oil Fractionation for Detailed Chemical Characterization of Heavy Crude Oils by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Equipped with Atmospheric Pressure Photoionization

期刊

ENERGY & FUELS
卷 26, 期 5, 页码 2558-2565

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ef201312m

关键词

-

资金

  1. Korea Institute of Energy Research [PM55021]
  2. Ministry of Land, Transport, and Maritime Affairs, Korea
  3. National Junior Research Fellowship

向作者/读者索取更多资源

Heavy crude oil samples, fractionated according to the saturates, aromatics, resins, and asphaltenes (SARA) fractionation method, were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure photoionization (APPI). SARA fractionation separates the crude oil into four main classes based on polarity and solubility. FT-ICR MS analyses of each if these fractions yielded spectra quite different from those of unfractionated crude oil. However, the spectrum acquired from the aromatics fraction was very similar to those of the unfractionated crude oil. The class, carbon number, and double-bond equivalence distributions obtained from each fraction were in agreement with what is expected from each SARA fraction. The data acquired from SARA fractions can be used to generate four peak lists for each crude oil sample. A master peak list, representing crude oil, was created by adding the same amount of a synthetic standard compound to each fraction. The abundance of the other peaks relative to the standard was used to combine the four peak lists into a single list. The number of compounds in the master list was twice that obtained by APPI FT-ICR MS analysis of unfractionated crude oil. Numerous NOx and SOx class compounds, which were not observed in the direct analysis of unfractionated heavy crude oils, were abundant in the resins fraction. Overall, this study shows that combining chromatographic techniques, including fractionation, with high-resolution MS is needed for a more complete understanding of the heavy molecules in petroleum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据