4.7 Article

Inhibition of Asphaltene Precipitation by TiO2, SiO2, and ZrO2 Nanofluids

期刊

ENERGY & FUELS
卷 25, 期 7, 页码 3150-3156

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ef2001635

关键词

-

资金

  1. NIOC-RD [81-88009]

向作者/读者索取更多资源

Asphaltene precipitation causes several problems during crude oil production, transportation, and refinery processes. Therefore, finding an inhibitor to prevent or delay asphaltene precipitation is of paramount importance. In this work, effects of TiO2, ZrO2, and SiO2 fine nanoparticles in organic-based nanofluids have been investigated to study their potential for stabilizing asphaltene particles in oil. To this end, polarized light microscopy has been applied to determine the onset of asphaltene precipitation by titration of dead oil samples from Iranian crude oil reservoirs with n-heptane in the presence of nanofluids. Results show that rutile (TiO2) fine nanoparticles can effectively enhance the asphaltene stability in acidic conditions and act inversely in basic conditions. It was found that the required amount of n-heptane for destabilizing the colloidal asphaltene is considerably higher in presence of TiO2 nanofluids at pH below 4. The FTIR spectroscopy indicates changes in n-heptane insoluble asphaltene when acidic TiO2 nanofluid is used as inhibitor. According to the results obtained by FTIR spectroscopy, TiO2 nanoparticles can enhance the stability of asphaltene nanoaggregates through formation of hydrogen bond at acidic conditions. This is while other materials used in this experiment, as well as the TiO2 nanoparticles in basic conditions, are unable to form any hydrogen bond - hence their incapability to prevent asphaltene precipitation. Dynamic light scattering (DLS) measurements also have been performed to explain the mechanism of asphaltene precipitation in the presence of nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据