4.7 Article

Analysis; of the Impact of 2-Methylfuran on Mixture Formation and Combustion in a Direct-Injection Spark-Ignition Engine

期刊

ENERGY & FUELS
卷 25, 期 12, 页码 5549-5561

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ef201021a

关键词

-

资金

  1. Excellence Initiative by the German federal and state governments

向作者/读者索取更多资源

Within the Cluster of Excellence Tailor-Made Fuels from Biomass, a new reaction sequence to transform biomass into 2-methylfuran has been developed. In the present study, the influence of this potential biofuel on in-cylinder spray formation and evaporation as well as engine performance is studied experimentally using a direct-injection spark-ignition single-cylinder research, engine. The results obtained for 2-methylfuran are benchmarked against investigation on the same engine using conventional research octane number (RON) 95 fuel and ethanol. The in-cylinder spray formation and evaporation process is characterized by high-speed Mie scattering visualizations, indicating quicker evaporation of 2-methylfuran compared to ethanol. Engine experiments support the findings of the optical measurements by revealing excellent combustion stability, especially in cold conditions, combined with a hydrocarbon emission reduction of at least 61 % in the relevant spark timing range compared to conventional fuel. The enleanment capability was also found to be higher by 0.16 units of relative air/fuel ratio. A noticeable drawback resulting from the combustion of 2-methylfuran is higher emissions of nitrogen oxides. The knock resistance of 2-methylfuran at full load is significantly better compared to RON 95, however, worse than ethanol. It allows for a compression ratio increase of more than 3.5 units compared to RON 95. The measured efficiency benefits with a compression ratio increase of 3.5 units range up to 9.9 % at full load.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据