4.7 Article

Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production

期刊

ENERGY & FUELS
卷 22, 期 4, 页码 2775-2781

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ef8000967

关键词

-

向作者/读者索取更多资源

The biogas yield of rice straw during anaerobic digestion can be substantially increased through solid-state sodium hydroxide (NaOH) pretreatment. This study was conducted to explore the mechanisms of biogas yield enhancement. The chemical compositions of the pretreated rice straw were first analyzed. Fourier transform infrared (FTIR), hydrogen-1 nuclear magnetic resonance spectroscopy (H-1 NMR), X-ray diffraction (XRD), and gas permeation chromatography (GPC) were then used to investigate the changes of chemical structures and physical characteristics of lignin, hemicellulose, and cellulose. The results showed that the bioRas yield of 6% NaOH-treated rice straw was increased by 27.3-64.5%. The enhancement of the biogas yield was attributed to the improvement of biodegradability of the rice straw through NaOH pretreatment. Degradation of 16.4% cellulose, 36.8% hemicellulose, and 28.4% lignin was observed, while water-soluble substances were increased by 122.5%. The ester bond of lignin -carbohydratecomplexes (LCCs) was destroyed through the hydrolysis reaction, releasing more cellulose for biogas production. The linkages of interunits and the functional groups of lignin, cellulose, and hemicellulose were either broken down or destroyed, leading to significant changes of chemical structures. The original lignin with a large molecular weight and three-dimensional network structure became one with a small molecular weight and linear structure after NaOH pretreatment. The cellulosic crystal style was not obviously changed, but the crystallinity of cellulose increased. The changes of chemical compositions, chemical structures, and physical characteristics made rice straw become more available and biodegradable and thus were responsible for the enhancement of the biogas yield.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据