4.8 Article

Urban haze and photovoltaics

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 11, 期 10, 页码 3043-3054

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ee01100a

关键词

-

资金

  1. Singapore's National Research Foundation through the Singapore MIT Alliance for Research and Technology's Low energy electronic systems (SMART-LEES) IRG
  2. DOE-NSF ERF for Quantum Energy and Sustainable Solar Technologies (QESST)

向作者/读者索取更多资源

Urban haze is a multifaceted threat. Foremost a major health hazard, it also affects the passage of light through the lower atmosphere. In this paper, we present a study addressing the impact of haze on the performance of photovoltaic installations in cities. Using long-term, high resolution field data from Delhi and Singapore we derive an empirical relation between reduction in insolation and fine particulate matter (PM2.5) concentration. This approach enables a straightforward way to estimate air pollution related losses to photovoltaic power generation anywhere on the planet. For Delhi, we find that insolation received by silicon PV panels was reduced by 11.5% +/- 1.5% or 200 kWh m(-2) per year between 2016 and 2017 due to air pollution. We extended this analysis to 16 more cities around the planet and estimated insolation reductions ranging from 2.0% (Singapore) to 9.1% (Beijing). Using spectrum data from Singapore, we projected how other photovoltaic technologies would be affected and found an additional reduction compared to silicon of between 23% relative for GaAs and 42% for a 1.64 eV perovskite material. Considering current installation targets and local prices for electricity, we project that annual losses in revenue from photovoltaic installations could exceed 20 million USD for Delhi alone, indicating that annual economic damage from air pollution to photovoltaic site operators and investors worldwide could be billions of dollars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据