4.8 Review

Recent progress in organic photovoltaics: device architecture and optical design

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 7, 期 7, 页码 2123-2144

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ee00260a

关键词

-

资金

  1. National Science Foundation
  2. Research Corporation for Science Advancement
  3. University of Florida Office of Research

向作者/读者索取更多资源

Research on organic photovoltaic (OPV) materials and devices has flourished in recent years due to their potential for offering low-cost solar energy conversion. With a deepened understanding on the fundamental photovoltaic processes in organic electronic materials and the development of tailored materials and device architectures, we have seen a rapid increase in the efficiency of OPV devices to over 10%, which attracts tremendous commercial interests for further development and manufacturing. Here, we review recent progress in the field of organic photovoltaics, particularly on various innovative device architectures and optical designs to maximize the power conversion efficiency of OPV cells for a given set of photoactive donor and acceptor materials. Following an introduction of the basic device operation of organic photovoltaic cells and the advances in active materials, we firstly present different device architectures that have been used to optimize the charge generation and collection characteristics within the OPV devices. We then discuss various methods to manage and manipulate the light wave propagation in OPV devices for more complete absorption of the incident light, an important area that has been underexplored so far.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据