4.8 Article

Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 7, 期 6, 页码 1966-1973

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ee00022f

关键词

-

资金

  1. National Program on Key Basic Research Project (973 Program) [2011CB932304, 2014CB643502, 2014CB643501, 2014CB643600]
  2. NSFC [51103164, 21374124]
  3. Ministry of Science and Technology of China
  4. Chinese Academy of Sciences

向作者/读者索取更多资源

With the power conversion efficiency of polymer solar cells (PSCs) approaching the milestone value of 10%, their instability associated with a low work function metal cathode, particularly in the presence of oxygen and moisture, becomes a critical issue for real applications. To alleviate the air-sensitive problem, two easy-accessible solution-processed, environmentally friendly organic small-molecule cathode interlayers, with perylene diimides (PDI) as the core and amino (PDIN) or amino N-oxide (PDINO) as the terminal substituent, are explored. Benefitting from the extended planar structure of the PDI units, the two interlayer materials show high conductivities of similar to 10(-5) S cm(-1). This is the first time that thickness-insensitive small-molecule-based cathode interlayers are reported. It is also found that the work function tuning effect of the two PDI-based interlayers allows high work function metals (such as Au and Ag) to act as the cathode. With the conventional device structure with PTB7 as a donor and PC70BM as an acceptor, the PDINO-based devices exhibit an efficiency of 8.24% with Al as the top electrode and 8.16% with Ag as the top electrode, much higher than that of the corresponding Ca/Al-based device (6.98%). The high efficiency of 8.35% is also achieved in the device with PTB7-Th as the donor. The success of the two PDI-interlayers indicates that pi-delocalized planar structures with high electron affinities could be particularly useful in developing high-performance organic interlayer materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据