4.8 Review

Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 6, 期 2, 页码 347-370

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee22618a

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2013CB632404]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions
  3. National Natural Science Foundation of China [51272102, 21073090, 50902068]

向作者/读者索取更多资源

Harnessing solar energy for the production of clean hydrogen fuels by a photoelectrochemical (PEC) cell represents a very attractive but challenging alternative. This review focuses on recent developments of some promising photoelectrode materials, such as BiVO4, a-Fe2O3, TaON, and Ta3N5 for solar hydrogen production. Some strategies have been developed to improve PEC performances of the photoelectrode materials, including: (i) doping for enhancing visible light absorption in the wide bandgap semiconductor or promoting charge transport in the narrow bandgap semiconductor, respectively; (ii) surface treatment for removing segregation phase or surface states; (iii) electrocatalysts for decreasing the overpotentials; (iv) morphology control for enhancing the light absorption and shortening transfer distance of minority carriers; (v) other methods, such as sensitization, passivating layer, and band structure engineering using heterojunction structures, and so on. Photochemical durability of the photoelectrodes is also discussed, since any potential PEC technology must balance efficiency against cost and photochemical durability. Photochemical durability may be amended by optimizing the photoelectrode, electrocatalyst, and electrolyte at the same time. In addition, solar seawater splitting is briefly introduced because it has received attention recently. Finally, trends in research in PEC cells for solar hydrogen production are detailed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据