4.8 Article

A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 6, 期 7, 页码 2145-2155

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ee41318g

关键词

-

资金

  1. Agence Nationale de la Recherche (ANR) of France (BASILIC project)
  2. Natural Science and Engineering Research Council (NSERC) of Canada

向作者/读者索取更多资源

A Si-based anode with improved performance can be achieved using high-energy ball-milling as a cheap and easy process to produce Si powders prepared from a coarse-grained material. Ball-milled powders present all the advantages of nanometric Si powders, but not the drawbacks. Milled powders are nanostructured with micrometric agglomerates (median size similar to 10 mu m), made of submicrometric cold-welded particles with a crystallite size of similar to 10 nm. The micrometric particle size provides handling and non-toxicity advantages compared to nanometric powders, as well as four times higher tap density. The nanostructuration is assumed to provide a shortened Li+ diffusion path, a fast Li+ diffusion path along grain boundaries and a smoother phase transition upon cycling. Compared to non-milled 1-5 mu m powders, the improved performance of nanostructured milled Si powders is linked to a strong lowering of particle disconnection at each charge, while the irreversibility due to SEI formation remains unchanged. An electrode prepared in acidic conditions with the CMC binder achieves 600 cycles at more than 1170 mA h per gram of the milled Si-based electrode, in an electrolyte containing FEC/VC SEI-forming additives, with a coulombic efficiency above 99%, compared to less than 100 cycles at the same capacity for an electrode containing nanometric Si powder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据