4.8 Article

Sr- and Mn-doped LaAlO3-δ for solar thermochemical H2 and CO production

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 6, 期 8, 页码 2424-2428

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ee41372a

关键词

-

资金

  1. DOE NNSA [DE-FC52-08NA28752]
  2. Sandia National Laboratories Truman Fellowship in National Security Science and Engineering
  3. National Science Foundation MRSEC program [DMR-0820518]
  4. DOE Fuel Cell Technologies Office as part of the Production technology development area
  5. Laboratory Directed Research and Development at Sandia National Laboratories
  6. United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

The increasing global appetite for energy within the transportation sector will inevitably result in the combustion of more fossil fuel. A renewable-derived approach to carbon-neutral synthetic fuels is therefore needed to offset the negative impacts of this trend, which include climate change. In this communication we report the use of nonstoichiometric perovskite oxides in two-step, solar-thermochemical water or carbon dioxide splitting cycles. We find that LaAlO3 doped with Mn and Sr will efficiently split both gases. Moreover the H-2 yields are 9x greater, and the CO yields 6x greater, than those produced by the current state-of-the-art material, ceria, when reduced at 1350 degrees C and re-oxidized at 1000 degrees C. The temperature at which O-2 begins to evolve from the perovskite is fully 300 degrees C below that of ceria. The materials are also very robust, maintaining their redox activity over at least 80 CO2 splitting cycles. This discovery has profound implications for the development of concentrated solar fuel technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据