4.8 Article

Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 6, 期 1, 页码 205-216

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee23316a

关键词

-

资金

  1. Catalysis Center for Energy Innovation, an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004]
  3. Defense Advanced Research Project Agency through the Defense Science Office Cooperative [HR0011-09-C-0075]
  4. Energy Frontier Research Center

向作者/读者索取更多资源

We demonstrate how hemicellulose-derived C-5 sugars can be converted into a high-quality petroleum refinery feedstock by a four-step catalytic process. The substitute petroleum consists of normal, branched and cyclic alkanes up to 31 carbons in length and is similar in composition to feedstocks produced in a petroleum refinery today from crude oil. This process can be tuned to adjust the size of the liquid alkanes. In the first step furfural is produced from the acid-catalyzed dehydration of hemicellulose-derived sugar streams in a biphasic reactor. The second step is the aldol condensation of furfural with acetone in a THF solvent and using a NaOH catalyst to produce highly conjugated C-13 compounds along with some oligomeric adducts formed through Michael addition reactions. These compounds are then hydrogenated with a Ru/Al2O3 catalyst forming both the fully hydrogenated form of the C-13 oligomers and also forming larger oligomers by Diels-Alder reactions. The extent of Diels-Alder reactions can be tuned by changing the temperature and feed concentration, thereby adjusting the distribution of liquid alkanes that can be produced. The final step in this process is hydrodeoxygenation using a Pt/SiO2-Al2O3 bifunctional catalyst to produce the liquid alkanes. A simple biorefinery model has shown that about 55% of a furfural-acetone mixture (10 : 3 wt ratio) can be converted into cycle oils while also producing other refinery products such as gasoline and natural gas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据