4.8 Article

Modeling an integrated photoelectrolysis system sustained by water vapor

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 6, 期 12, 页码 3713-3721

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ee42143k

关键词

-

资金

  1. Office of Science of the U.S. Department of Energy [DE-SC0004993]

向作者/读者索取更多资源

Two designs for an integrated photoelectrolysis system sustained by water vapor have been investigated using a multi-physics numerical model that accounts for charge and species conservation, electron and ion transport, and electrochemical processes. Both designs leverage the use of a proton-exchange membrane that provides conductive pathways for reactant/product transport and prevents product crossover. The resistive losses, product gas transport, and gas crossovers as a function of the geometric parameters of the two designs have been evaluated systematically. In these designs, minimization of pathways in the membrane that can support the diffusive transport of product gases from the catalyst to the gas-collecting chamber was required to prevent supersaturation of hydrogen or oxygen gases at the Nafion/catalyst interface. Due to the small, thin membrane layer that was required, a small electrode width (<300 mm) was also required to produce low resistive losses in the system. Alternatively, incorporation of a structured membrane that balances the gas transport and ionic transport allows the maximum electrode width to be increased to dimensions as large as a few millimeters. Diffusive gas transport between the cathode and anode was the dominant source for crossover of the product gases under such circumstances. The critical dimension of the electrode required to produce acceptably low rates of product crossover was also investigated through the numerical modeling and device simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据