4.8 Article

Charge generation and energy transfer in hybrid polymer/infrared quantum dot solar cells

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 6, 期 3, 页码 769-775

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee24175g

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences [DE-FG02-07ER46467]
  2. NSF SEES fellowship program [GEO-1215753]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [1215753] Funding Source: National Science Foundation

向作者/读者索取更多资源

Conjugated polymers blended with nanocrystal quantum dots are interesting as solution processable active layers for infrared light harvesting in thin film solar cells. We study photocurrent generation processes in hybrid polymer/quantum dot photovoltaics by comparing device performance and photoinduced absorption (PIA) spectra across blends of three different conjugated polymers, poly(2,'-bis(2-(hexyldecyl)-quinoxaline-5,8-diyl-alt-N-(2-hexyl-decyl)dithieno[3,2-b:2',3'-d] pyrrole) (PDTPQx-HD), poly[(4,4'-bis(3-(2hexyl- decyl) dithieno[3,2-b: 2',3'-d] pyrrole)-2,6-diyl-alt-(2,5-bis(3-(2-ethyl-hexyl)thiophen-2yl)thiazolo[5,4-d] thiazole)] (PPEHTT), and poly[(4,4'-bis(2-octyl)dithieno[3,2-b: 2'3'-d]silole)-2,6-diyl-alt-(2,5-bis(3-octylthiophen-2yl) thiazolo[5,4-d]thiazole)] (PSOTT) with PbS quantum dots. The PIA spectra and device performance provide evidence for long-lived photoinduced charge separation and bulk heterojunction device operation for blends of both PDTPQx-HD and PPEHTT with PbS. In contrast we find that PSOTT/PbS blends can produce viable solar cells without any evidence for long-lived charge transfer in the PIA spectra. Even so, the external quantum efficiency (EQE) spectra of PSOTT/PbS solar cells indicate that the polymer plays a significant role in light harvesting. We use photoluminescence excitation spectroscopy to confirm that the polymer funnels energy to the PbS quantum dots via energy transfer, and speculate that these blends may operate as PbS Schottky diodes sensitized by energy transfer from the semiconducting polymer host.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据