4.8 Review

High temperature sodium batteries: status, challenges and future trends

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 6, 期 3, 页码 734-749

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ee24086j

关键词

-

资金

  1. Gobierno Vasco/Eusko Jaurlaritza [IT-312-07]
  2. Basque Government

向作者/读者索取更多资源

The progress in the research and development of high temperature sodium batteries suggests that all-solid-state batteries with inorganic or polymer solid electrolytes are promising power sources for a wide range of applications due to their high thermal stability, reliability, long-cycle life and versatile geometries. The electrolytes play a fundamental role in terms of current (power) density, the time stability, and the safety of batteries and, as a result, their continuous improvement and innovation are indeed critical to success. In fact, inorganic solid electrolytes pave the way for improving the cost-effective development of rechargeable sodium batteries. This review describes a state-of-the-art overview of most of the Na+ conductors for use as electrolytes in sodium/sulphur and ZEBRA batteries. The emphasis of this article is on inorganic solid electrolytes, especially, ceramic and glass-ceramic electrolytes as promising alternatives applicable to all solid-state batteries. As part of a continuous effort to find new materials that operate at room temperature and moderate temperatures, NASICON electrolytes will also be considered. Polymer electrolytes based on poly(ethylene oxide) (PEO) are also very suitable for all solid-state batteries. Hence, the review focuses on ion transport based on the observed conductivity, electrolyte preparation, safety and environmental impact.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据