4.8 Article

Net primary energy balance of a solar-driven photoelectrochemical water-splitting device

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 6, 期 8, 页码 2380-2389

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ee40880a

关键词

-

资金

  1. Lawrence Berkeley National Laboratory (LBNL)
  2. US Department of Energy [DE-AC02-05CH11231]
  3. Joint Center for Artificial Photosynthesis (JCAP), a DOE Energy Innovation Hub
  4. Office of Science of the US Department of Energy [DE-SC0004993]

向作者/读者索取更多资源

A fundamental requirement for a renewable energy generation technology is that it should produce more energy during its lifetime than is required to manufacture it. In this study we evaluate the primary energy requirements of a prospective renewable energy technology, solar-driven photoelectrochemical (PEC) production of hydrogen from water. Using a life cycle assessment (LCA) methodology, we evaluate the primary energy requirements for upstream raw material preparation and fabrication under a range of assumptions of processes and materials. As the technology is at a very early stage of research and development, the analysis has considerable uncertainties. We consider and analyze three cases that we believe span a relevant range of primary energy requirements: 1550 MJ m(-2) (lower case), 2110 MJ m(-2) (medium case), and 3440 MJ m(-2) (higher case). We then use the medium case primary energy requirement to estimate the net primary energy balance (energy produced minus energy requirement) of the PEC device, which depends on device performance, e. g. longevity and solar-to-hydrogen (STH) efficiency. We consider STH efficiency ranging from 3% to 10% and longevity ranging from 5 to 30 years to assist in setting targets for research, development and future commercialization. For example, if STH efficiency is 3%, the longevity must be at least 8 years to yield a positive net energy. A sensitivity analysis shows that the net energy varies significantly with different assumptions of STH efficiency, longevity and thermo-efficiency of fabrication. Material choices for photoelectrodes or catalysts do not have a large influence on primary energy requirements, though less abundant materials like platinum may be unsuitable for large scale-up.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据