4.8 Article

Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 5, 期 3, 页码 6104-6110

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee02803d

关键词

-

资金

  1. Chinese Academy of Sciences [4912009YC006]
  2. National Key Basic Research Project (NKBRP) [2009CB939904]
  3. National Natural Science Foundation of China (NSFC) [50772126, 51172265, 51032008]
  4. Shanghai Key Basic Research Project [09DJ1400200]
  5. Shanghai Basic Research Project [08JC1420300]
  6. Shanghai Talent Project of Science and Technology [09PJ1410700]

向作者/读者索取更多资源

Vanadium dioxide is a key material for thermochromic smart windows that can respond to environmental temperature and modulate near infrared irradiation by changing from a transparent state at low temperature to a more reflective state at high temperature, while maintaining visible transmittance. VO2 thermochromism is commonly used in films on glass that function as smart windows. Flexible VO2 nanocomposite foils are able to combine the intrinsic properties of VO2 nanoparticles with the added functionalities contributed by nanoscale and interface effects, such as increased visible transparency and infrared modulation ability. These foils are promising for applications in construction and automotive glasses to increase energy efficiency. However, VO2 nanoparticles may be unstable, and they are difficult to prepare in stable dispersive suspensions. In this paper, we report a novel all-solution process that can be used to prepare transparent, stable and flexible VO2-based composite films. These films exhibit UV-shielding properties and an excellent temperature-responsive thermochromism in the near infrared region. A typical film has a solar modulation efficiency of 13.6%, which is the highest value for VO2 thermochromic films with comparable visible transmittance. Coating the VO2 nanoparticles with a thin SiO2 shell significantly improved their anti-oxidation and anti-acid abilities. This result represents an important breakthrough in VO2 thermochromism, and it may have applications for near infrared modulation of glass used in construction or cars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据