4.8 Article

Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 5, 期 5, 页码 6966-6972

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee03495f

关键词

-

资金

  1. National Natural Science Foundation of China [50902095]
  2. SJTU-UM

向作者/读者索取更多资源

Polyacrylonitrile/graphene (PAN/GNS) composites have been synthesized via an in situ polymerization method for the first time, which serve as a precursor to prepare a cathode material for high-rate rechargeable Li-S batteries. It is observed from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the PAN nanoparticles, less than 100 nm in size, are anchored on the surface of the GNS and this unique structure is maintained in the sulfur composite cathode material. The electrochemical properties of the pyrolyzed PAN-S/GNS (pPAN-S/GNS) composite cathode have been evaluated by cyclic voltammograms, galvanostatic discharge-charge cycling and electrochemical impedance spectroscopy. The results show that the pPAN-S/GNS nanocomposite, with a GNS content of ca. 4 wt.%, exhibits a reversible capacity of ca. 1500 mA hg(sulfur)(-1) or 700 mA hg(-1) composite in the first cycle, corresponding to a sulfur utilization of ca. 90%. The capacity retention is relatively stable at 0.1 C. Even up to 6 C, a competitive capacity of ca. 800 mA hg(sulfur)(-1) is obtained. The superior performance of pPAN-S/GNS is attributed to the introduction of the GNS and the even composite structure. The GNS in the composite materials works as a three-dimensional (3-D) nano current collector, which could act not only as an electronically conductive matrix, but also as a framework to improve the electrochemical performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据