4.8 Article

Plasmonic Ag@Ag3(PO4)1-x nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 5, 期 10, 页码 8917-8922

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee22185c

关键词

-

资金

  1. National Science Council
  2. Ministry of Education, Taiwan
  3. AOARD under AFOSR, US
  4. NSC
  5. IAMS
  6. NTU
  7. Argonne National Laboratory

向作者/读者索取更多资源

We report the new design of a high-activity model for photocatalytic nanosystem comprising an Ag core covered with an approximately 2 nm thick nanoshell of Ag-3(PO4)(1-x) (Ag@Ag-3(PO4)(1-x)) on the ZnO NRs that are visible-light-sensitive photofunctional electrodes with strong photooxidative capabilities to evolve O-2 from water. The maximum photoconversion efficiency that could be successfully achieved was 2%, with a significant photocurrent of 3.1 mA cm(-2). Furthermore, in addition to achieving a maximum IPCE value of 90%, it should be noted that the IPCE of Ag@Ag-3(PO4)(1-x) photosensitized ZnO photoanodes at the monochromatic wavelength of 400 nm is up to 60%. Our photoelectrochemical performances are comparable to those of many oxide-based photoanodes in recent reports. The improvement in photoactivity of PEC water-splitting may be attributed to the enhanced near-field amplitudes resulting from localized surface plasmon resonance (LSPR) of Ag-core and absorption edge of the Ag-3(PO4)(1-x) nanoshell, which increase the rate of formation of electron-hole pairs at the nearby surface of Ag-3(PO4)(1-x) nanoshell and ZnO nanorod, thus enlarging the amount of photogenerated charge contributing to photocatalysis. The capability of developing highly photoactive Ag@Ag-3(PO4)(1-x)-photosensitized ZnO photoanodes opens up new opportunities in various photocatalytic areas, particularly solar-hydrogen fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据