4.8 Article

Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 5, 期 9, 页码 8651-8659

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee22330a

关键词

-

资金

  1. Office of Naval Research [N00014-10-1-0084, N00014-12-1-0229]
  2. Office of Science (BER), US Department of Energy [DE-SC0004114, DE-FC02-02ER63446]
  3. NSF Center for Hierarchical Manufacturing [CMMI-1025020]

向作者/读者索取更多资源

Two competing models for long-range electron transport through the conductive biofilms and nanowires of Geobacter sulfurreducens exist. In one model electrons are transported via pili that possess delocalized electronic states to function as protein wires with metallic-like conductivity. In the other model electrons are transported by more traditional electron transfer via electron hopping/tunneling between the c-type cytochromes in G. sulfurreducens biofilms and pili. The cytochrome hypothesis was further examined. Quantifying c-type cytochromes in G. sulfurreducens biofilms and pili indicated that there are insufficient cytochromes to account for electron transport through the bulk of the biofilm or pili and demonstrated that there is a negative correlation between cytochrome abundance and biofilm conductivity. Direct imaging using atomic force microscopy revealed that cytochromes were not packed close enough on pili to permit electron hopping/tunneling along the pili. Inactivating cytochromes had no impact on biofilm conductivity. The results of electrochemical gating studies were inconsistent with electron transport via cytochromes. Theoretical considerations suggest that a cytochrome model cannot explain the previously reported response of biofilm conductivity to temperature changes. These multiple lines of evidence, which rely on approaches with different sets of assumptions, demonstrate that the hypothesis that long-range electron transport through G. sulfurreducens biofilms and nanowires can be attributed to electron hopping/tunneling between c-type cytochromes is incorrect. In contrast, these multiple lines of evidence are consistent with long-range electron transport through the biofilms via networks of pili that possess metallic-like conductivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据