4.8 Article

The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 4, 期 6, 页码 2152-2159

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ee00773k

关键词

-

资金

  1. US National Science Foundation (NSF) [CMMI-0925678, CMMI-0926093]
  2. Semiconductor Research Corporation (SRC) [2009-RJ-2020G]
  3. Directorate For Engineering
  4. Div Of Civil, Mechanical, & Manufact Inn [0926093, 1110408] Funding Source: National Science Foundation

向作者/读者索取更多资源

Electrochemical power devices with a long lifespan, long-term energy retention and great cycle stability are extremely important for periodic energy store/supply, especially for solar energy storage for space equipment and for power electronics in integrated circuits. In this report, we have systematically investigated the effects of the charging current density and temperature over the self-discharge (SDC) process of activated carbon fabric-based (ACF) supercapacitors with 1 M LiPF(6)/EC-DEC (v/v=1) and 1 M TEABF(4)/PC as electrolytes, respectively. The experimental results have shown that a different control mechanism governs the SDC process in each electrolyte system. Significant energy retention (in excess of 70%) was obtained in the ACF-TEABF(4) system after 36 h. SDC at room temperature. A dual-mechanism control model is proposed for the first time which describes perfectly the SDC process of the supercapacitor using 1 M TEABF(4)/PC as the electrolyte over different charge current densities and at different SDC temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据