4.8 Article

One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 4, 期 4, 页码 1161-1176

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ee00197j

关键词

-

向作者/读者索取更多资源

In this perspective, the catalytic shortfalls of contemporary DMFCs are discussed in the context of the materials that are currently being employed as electrocatalysts in both the anode and cathode. In light of these shortfalls, the inherent advantages of one-dimensional (1D) nanostructures are highlighted so as to demonstrate their potential as efficient, robust, and active replacements for contemporary nanoparticulate electrocatalysts. Finally, we review in detail the recent applications of 1D nanostructured electrocatalysts as both anodes and cathodes, and explore their potentially promising results towards improving DMFC efficiency and cost-effectiveness. In the case of cathode electrocatalysts, our group has recently prepared both 200 nm platinum nanotubes and ultrathin 2 nm platinum nanowires, which evinced two-fold and seven-fold enhancements in area specific ORR activity, respectively, as compared with contemporary commercial Pt nanoparticles. Similarly, the development of one-dimensional anodic electrocatalysts such as alloyed PtRu and PtCo nanowires, hierarchical Pt similar to Pd nanowires, and segmented PtRu systems have yielded promising enhancements towards methanol oxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据