4.8 Article

TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 4, 期 1, 页码 209-215

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ee00086h

关键词

-

资金

  1. Ministry of Education, Singapore [T208A1225, ARC 5/08]

向作者/读者索取更多资源

TiO2 inverse opals (TIO) fabricated by the atomic layer deposition (ALD) technique showed a superior infiltration result when compared to those fabricated by the conventional nanoparticles-infiltration method reported in previous studies. The ALD can achieve high filling fractions of more than ca. 96% of the maximum possible infiltration by conformal filling of 288, 390 and 510 nm opals, giving rise to high quality TIO. The photoelectrochemical performances of the ALD-fabricated TIO photoanodes of different sizes are investigated systematically for the first time in dye-sensitized solar cells (DSCs). When the TIO with a size of 288 nm was used as photoanode and indoline dye as a sensitizer in DSCs, the power conversion efficiency of the cell could attain 2.22% (Air Mass 1.5). It is found that the efficiency increases with decreasing lattice size of TIO electrode due to the larger surface area for dye loading. Owing to the selective reflectivity of the inverse opal, IPCE spectra of TIO electrodes revealed a strong wavelength dependence. Strategies relating to the characteristics of selective reflection and the design of composite photoanodes to enhance the efficiency of DSCs are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据