4.8 Article

Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 4, 期 8, 页码 2774-2789

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ee00717j

关键词

-

资金

  1. New Research Directions for Solid Oxide Fuel Cell Science and Engineering [EP/F009720/1]
  2. US-DOE-Basic Energy Sciences [DE-SC0002633]
  3. US Nuclear Regulatory Commission
  4. National Science Foundation [TG-ASC090058]
  5. Ramon y Cajal postdoctoral program and Consolider MULTICAT [CDS-2009-00050]
  6. Spanish Ministry of Science and Innovation [ENE2010-14833]
  7. Generalitat de Catalunya (Advanced Materials for Energy Network, XaRMAE) [2009-SGR-440]

向作者/读者索取更多资源

Solid oxide fuel cells are of technological interest as they offer high efficiency for energy conversion in a clean way. Understanding fundamental aspects of oxygen self-diffusion in solid state ionic systems is important for the discovery of next-generation electrolyte and cathode material compositions and microstructures that can enable the operation of SOFCs at lower temperatures more efficiently, durably, and economically. In the present perspective article, we illustrate the important role of modelling and simulations in providing direct atomic scale insights on the oxygen ion transport mechanisms and conduction properties in the cathode and electrolyte materials, and in accelerating the progress from old materials to new concepts. We first summarize the ionic transport mechanisms in the traditional cathode and electrolyte materials which have been widely studied. We then pay our attention to the non-traditional materials and their oxygen transport paths from recent studies, focusing on structural and transport anisotropy and lattice dynamics. Lastly, we highlight the new developments in the potential to increase the ionic conductivity of the traditional materials through external mechanical stimuli, bringing about the mechano-chemical coupling to drive fast ionic transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据