4.8 Article

Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 4, 期 12, 页码 5008-5012

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ee02200h

关键词

-

资金

  1. Noguchi Institute
  2. Grants-in-Aid for Scientific Research [21592214] Funding Source: KAKEN

向作者/读者索取更多资源

Enzymatic biofuel cells have attracted much attention for their potential to directly use biochemical energy sources in living organisms such as animals, fruits, etc. However, generally natural organisms have a skin, and the oxygen concentration in the organisms is lower than that of biofuels like sugars. Here, we fabricated a novel miniature assembly that consists of a needle bioanode for accessing biofuels in organisms through their skins and a gas-diffusion biocathode for utilizing the abundant oxygen in air. The performance of the biocathode was fourfold improved by optimizing its hydrophobicity. The assembled device with four needle anodes for fructose oxidation was inserted into a raw grape, producing a maximum power of 26.5 mu W (115 mu W cm(-2)) at 0.34 V. A light-emitting diode (LED) with the cell served as a self-powered indicator of the sugar level in the grape. Power generation from blood sugar was also investigated by inserting a needle anode for glucose oxidation into a blood vessel in a rabbit ear. Prior coating of the tip of the needle anode with an anti-biofouling agent was effective to stabilize the output power.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据