4.8 Article

Alignment of energy levels at the ZnS/Cu(In,Ga)Se2 interface

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 4, 期 9, 页码 3487-3493

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ee01292d

关键词

-

资金

  1. Korean Ministry of Education, Science and Technology [2011-0001000, 2009-0094040, 2010-0029714]
  2. Korea Evaluation Institute of Industrial Technology (KEIT) [2008NBLHME030000] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  3. National Research Foundation of Korea [2009-0094040] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Further understanding of the electronic structure at the ZnS/Cu(In,Ga)Se-2 interface is necessary to enhance the electron injection across the interface in Cu(In,Ga)Se-2 solar cells. The valence band structure and shallow core levels were investigated by ultraviolet photoelectron spectroscopy depth profile analysis with He II line excitation. ZnS film was grown by a chemical bath deposition on a Cu (In,Ga)Se-2 absorber deposited by the co-evaporation of Cu, In, Ga, and Se elemental sources. The discontinuity of 2.0 eV in the valence band edge at the ZnS/Cu(In0.7Ga0.3)Se-2 interface was directly determined. This type of valence band offset yields a spike conduction band alignment of 0.25 eV. The positions of the VBM and the Zn 3d core-level emission of the buffer underwent the substantial shifts of 0.36 eV and 0.64 eV to a lower binding energy levels during the etching process. The shifts are ascribed to the contribution of the band bending in the ZnS buffer layer and its graded chemical composition. This study is the first to determine the small conduction band offset at the interface formed by the chemical bath deposited ZnS layer and the Cu(In0.7Ga0.3)Se-2 absorber. Our results also provide information toward the design optimization of the optoelectronic properties of the ZnS/Cu(In0.7Ga0.3) Se-2 interface. To enhance the electron injection from Cu(In0.7Ga0.3)Se-2 absorber to ZnS layer further lowering of the energy barrier is required. For this purpose, the bandgap of ZnS should be reduced by controlling the crystal structure and composition or its Fermi level should be upward shifted by appropriate doping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据