4.8 Article

Atomic-scale investigation on lithium storage mechanism in TiNb2O7

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 4, 期 8, 页码 2638-2644

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0ee00808g

关键词

-

资金

  1. Chinese Academy of Sciences [KJCX2-YW-W26]
  2. 863 Project [2009AA033101]
  3. 973 Projects [2007CB936500, 2009CB220104, 2010CB833102]
  4. NSFC [50972164]

向作者/读者索取更多资源

Titanium niobium oxide (TiNb2O7) with a monoclinic layered structure has been synthesized by a solid state reaction method as an anode candidate for Li-ion batteries. The TiNb2O7 electrode shows a lithium storage capacity of 281 mAh g(-1) with an initial coulombic efficiency as high as 93% at a current density of 30mA g(-1) (ca. 0.1C). The average lithium insertion voltage is about 1.64 V vs. Li/Li+ at a voltage range of 0.8-3.0 V. The electrodes exhibit small voltage hysteresis (c. a. 0.1 V at 30 mA g(-1)) and good capacity retention. Such superior electrochemical performance of TiNb2O7 makes it one of the most promising anode materials to replace spinel Li4Ti5O12 for applications in hybrid vehicles and large scale stationary Li-ion batteries. In addition, we demonstrate crystal structures of TiNb2O7 and lithiated TiNb2O7 using advanced spherical-aberration-corrected scanning transmission electron microscopy (STEM), to picture the lattice sites occupied by the Li, Ti, Nb and O atoms at atomic-scale. Possible lithiation/delithiation processes and reaction mechanisms are revealed in consistence with first-principles prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据