4.8 Article

Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 3, 期 3, 页码 358-365

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b924621p

关键词

-

资金

  1. NSF-MRI
  2. National Science Council [NSC-096-2917-I-564-114]
  3. Defense Advanced Research [W911NF-09-2-0010]
  4. Emerging Frontiers & Multidisciplinary Activities [0937895] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this paper we study the carbon efficiency of combining hydrolysis and pyrolysis processes using maple wood as a feedstock. A two-step hydrolysis of maple wood in batch reactors, that consisted of a thermochemical pretreatment in water followed by enzymatic hydrolysis, achieved an 88.7 wt% yield of glucose and an 85 wt% yield of xylose as liquid streams. The residue obtained was 80 wt% lignin. A combination of TGA and pyroprobe studies was used for the pyrolysis of pure maple wood, hemicellulose-extracted maple wood, and the lignin residue from the hydrolysis of maple wood. Pyrolysis of raw maple wood produced 67 wt% of condensable liquid products (or bio-oils) that were a mixture of compounds including sugars, water, phenolics, aldehydes, and acids. Pyrolysis of hemicellulose-extracted maple wood (the solid product after pretreatment of maple wood) showed similar bio-oil yields and compositions to raw maple wood while pyrolysis of the lignin residue (the final solid product of enzymatic hydrolysis) produced only 44.8 wt% of bio-oil. The bio-oil from the lignin residue is mostly composed of phenolics such as guaiacol and syringol compounds. Catalytic fast pyrolysis (CFP) of maple wood, hemicellulose-extracted maple wood, and lignin residue produced 18.8, 16.6 and 10.1 wt% aromatic products, respectively. Three possible options for the integration of hydrolysis with pyrolysis processes were evaluated based on their material and carbon balances: Option 1 was the pyrolysis/CFP of raw maple wood, option 2 combined hemicellulose extraction by hydrolysis with pyrolysis/CFP of hemicellulose-extracted maple wood, and option 3 combined the two-step hydrolysis of hemicellulose and cellulose sugar extraction with pyrolysis/CFP of the lignin residue. It was found that options 1, 2, and 3 all have similar overall carbon yields for sugars and bio-oils of between 66 and 67%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据