4.8 Article

Metabolic engineering of cyanobacteria for ethanol production

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 2, 期 8, 页码 857-864

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b811937f

关键词

-

向作者/读者索取更多资源

Development of renewable energy is rapidly being embraced by our society and industry to achieve the nation's economic growth goals and to help address the world's energy and global warming crises. Currently most of the bioethanol production is from the fermentation of agricultural crops and residues. There is much debate concerning the cost effectiveness and energy efficiency of such biomass based ethanol production processes. Here, we report the creation of a Synechocystis sp. PCC 6803 strain that can photoautotrophically convert CO2 to bioethanol. Transformation was performed using a double homologous recombination system to integrate the pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh) genes from obligately ethanol producing Zymomonas mobilis into the Synechocystis PCC 6803 chromosome under the control of the strong, light driven psbAII promoter. PCR based assay and ethanol production assay were used to screen for stable transformants. A computerized photobioreactor system was established for the experimental design and data acquisition for the analysis of the cyanobacterial cell cultures and ethanol production. The system described here shows an average yield of 5.2 mmol OD730 unit(-1) litre(-1) day(-1) with no required antibiotic/selective agent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据