4.8 Review

Hydrogen production from renewable sources: biomass and photocatalytic opportunities

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 2, 期 1, 页码 35-54

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b808138g

关键词

-

资金

  1. CICyT [ENE2007-07345-C03-01/ ALT]
  2. CAM (Spain) [S-0505/ EN/ 0404]
  3. Ministry of Science and Education (Spain)

向作者/读者索取更多资源

The demand for hydrogen over the coming decade is expected to grow for both traditional uses (ammonia, methanol, refinery) and running fuel cells. At least in the near future, this thirst for hydrogen will be quenched primarily through the reforming of fossil fuels. However, reforming fossil fuels emits huge amounts of carbon dioxide. One approach to reduce carbon dioxide emissions, which is considered first in this review, is to apply reforming methods to alternative renewable materials. Such materials might be derived from plant crops, agricultural residues, woody biomass, etc. Clean biomass is a proven source of renewable energy that is already used for generating heat, electricity, and liquid transportation fuels. Clean biomass and biomass-derived precursors such as ethanol and sugars are appropriate precursors for producing hydrogen through different conversion strategies. Virtually no net greenhouse gas emissions result because a natural cycle is maintained, in which carbon is extracted from the atmosphere during plant growth and released during hydrogen production. The second option explored here is hydrogen production from water splitting by means of the photons in the visible spectrum. The sun provides silent and precious energy that is distributed fairly evenly all over the earth. However, its tremendous potential as a clean, safe and economical energy source cannot be exploited unless it is accumulated or converted into more useful forms of energy. Finally, this review discusses the use of semiconductors, more specifically CdS and CdS-based semiconductors, which are able to absorb photons in the visible region of the spectrum. The energy stored within a semiconductor as electronic energy (electrons and holes) can be used to split water molecules by simultaneous reactions into H-2 and O-2. This conversion of solar energy into a clean fuel (H-2) is perhaps the greatest challenge for scientists in the 21st century.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据