4.7 Article

Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters

期刊

ENERGY
卷 59, 期 -, 页码 173-182

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2013.06.049

关键词

Supercritical ethanol; Liquefaction; Lignocellulosic biomass; Biocrude; Hydrogen donor

资金

  1. National Research Foundation of Korea
  2. Ministry of Science, ICT & Future Planning [2009-0083540]

向作者/读者索取更多资源

In this study, the influence of various physical process parameters on the liquefaction of lignocellulosic biomass (pine wood) in supercritical ethanol was investigated. The parameters include reaction temperature (280-400 degrees C), initial nitrogen pressure (0.4-7.5 MPa), reaction time (0-240 min), and biomass-to-solvent ratio (0.06-0.25 g/g). The reaction temperature and residence time were found to have a more significant effect on biomass conversion and product yield than pressure and biomass-to-solvent ratio had; conversion in the range 34.0-98.1% and biocrude yield in the range 15.8-59.9 wt% were observed depending on the process parameters. Despite the absence of catalysts and external hydrogen source, solid biomass to liquid and gaseous products conversion of 98.1%, and a high biocrude yield of approximately 65.8 wt% were achieved at 400 degrees C, 120 min, and a biomass-to-solvent ratio of 0.06 g/g. Moreover, the biocrude contained considerably lower amounts of oxygen and higher amounts of carbon and hydrogen, resulting in a substantially higher heating value (>30 MJ/kg) as compared to raw feed-stock (20.4 MJ/kg). A comparison with sub- or supercritical water-based liquefaction revealed that supercritical ethanol produced biocrude with a lower molecular weight and much better yield. Finally, a new biomass liquefaction reaction mechanism associated with supercritical ethanol is proposed. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据