4.7 Article

Optimization of FOME (fish oil methyl esters) blend and EGR (exhaust gas recirculation) for simultaneous control of NOx and particulate matter emissions in diesel engines

期刊

ENERGY
卷 62, 期 -, 页码 224-234

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2013.09.056

关键词

Biodiesel; Diesel engine; Combustion; Emissions; Fish oil methyl esters; EGR

向作者/读者索取更多资源

There is world-wide interest in the search for alternatives to petroleum derived fuels for diesel engines. Key driving factors are depleting fossil-fuel reserves all over the globe as well as the environmental impact of burning fossil fuels that cause pollution and global warming. Bio-diesel derived from edible oils, non-edible oils and animal fats can be used in diesel engines with little or no modification. Non-land-based renewable sources are becoming important for the production of biodiesel due to limited availability of land. Under these circumstances, fish oil extracted from wastes of processed marine fish and refined through transesterification becomes an attractive alternative for the production of biodiesel. In this work, performance and emission characteristics of FUME (fish oil methyl ester) and its blends are evaluated in a direct-injection single-cylinder constant-speed diesel engine primarily used in the agricultural sector. It is seen that 20% FOME blend gives almost the same brake thermal efficiency with lower unburned hydrocarbons, carbon monoxide and soot emissions but higher NOx (nitrogen oxides) emissions compared to diesel fuel. EGR (Exhaust Gas Recirculation) is used to control NOx emissions. Percentage of EGR is varied to determine optimum EGR for 20% FUME blend. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据