4.7 Article

Method for optimal design of pipes for low-energy district heating, with focus on heat losses

期刊

ENERGY
卷 36, 期 5, 页码 2407-2418

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2011.01.024

关键词

District heating; Low energy; Heat loss; Steady-state simulation; Thermal conductivity; Finite-element method

向作者/读者索取更多资源

The synergy between highly energy-efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy-saving policies and energy supply systems based on renewable energy (RE). Network transmission and distribution heat loss is one of the key factors in the optimal design of low-energy DH systems. Various pipe configurations are considered in this paper: flexible pre-insulated twin pipes with symmetrical or asymmetrical insulation, double pipes, and triple pipes. These technologies represent potential energy-efficient and cost-effective solutions for DH networks in low-heat density areas. We start with a review of theories and methods for steady-state heat loss calculation. Next, the article shows how detailed calculations with 2D-modeling of pipes can be carried out by means of computer software based on the finite element method (FEM). The model was validated by comparison with experimental measurements, analytical formulas, and data from the literature. We took into account the influence of the temperature-dependent conductivity coefficient of polyurethane insulation foam, which enabled us to achieve a high degree of accuracy. We also showed the influence of the soil temperature throughout the year. Finally, the article describes proposals for the optimal design of pipes for low-energy applications and presents methods for decreasing heat losses. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据