4.7 Article

Entropy generation due to natural convection in discretely heated porous square cavities

期刊

ENERGY
卷 36, 期 8, 页码 5065-5080

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2011.06.001

关键词

Entropy; Natural convection; Discrete heating; Square cavity

向作者/读者索取更多资源

Optimization of industrial processes for higher energy efficiency may be effectively carried out based on the thermodynamic approach of entropy generation minimization (EGM). This approach provides the key insights on how the available energy (exergy) is being destroyed during the process and the ways to minimize its destruction. In this study, EGM approach is implemented for the analysis of optimal thermal mixing and temperature uniformity due to natural convection in square cavities filled with porous medium for the material processing applications. Effect of the permeability of the porous medium and the role of distributed heating in enhancing the thermal mixing, temperature uniformity and minimization of entropy generation is analyzed. It is found that at lower Darcy number (Da), the thermal mixing is low and the heat transfer irreversibility dominates the total entropy generation. In contrast, thermal mixing is improved due to enhanced convection at higher Da. Friction irreversibility is found to dominate the total entropy generation for higher Prandtl number (Pr) fluids at higher Da, whereas the heat transfer irreversibility dominates the total entropy generation for lower Pr fluids. Based on EGM analysis, it is established that larger thermal mixing at high Darcy number may not be always recommended as the total entropy production is quite large at high Darcy number. Overall, it is found that the distributed heating methodology with multiple heat sources may be an efficient strategy for the optimal thermal processing of materials. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据