4.5 Article

Single-Tube and Multi-Turn Coil Near-Field Wireless Power Transfer for Low-Power Home Appliances

期刊

ENERGIES
卷 11, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/en11081969

关键词

electromagnetic field; mobile device; inductive coupling; near-field; single-tube loop coils; multi-turn copper wire coil; wireless power transfer

资金

  1. Al-Rafidain University College

向作者/读者索取更多资源

Single-tube loop coil (STLC) and multi-turn copper wire coil (MTCWC) wireless power transfer (WPT) methods are proposed in this study to overcome the challenges of battery life during low-power home appliance operations. Transfer power, efficiency, and distance are investigated for charging mobile devices on the basis of the two proposed systems. The transfer distances of 1-15 cm are considered because the practicality of this range has been proven to be reliable in the current work on mobile device battery charging. For STLC, the Li-ion battery is charged with total system efficiencies of 86.45%, 77.08%, and 52.08%, without a load, at distances of 2, 6, and 15 cm, respectively. When the system is loaded with 100 at the corresponding distances, the transfer efficiencies are reduced to 80.66%, 66.66%, and 47.04%. For MTCWC, the battery is charged with total system efficiencies of 88.54%, 75%, and 52.08%, without a load, at the same distances of 2, 6, and 15 cm. When the system is loaded with 100 at the corresponding distances, the transfer efficiencies are drastically reduced to 39.52%, 33.6%, and 15.13%. The contrasting results, between the STLC and MTCWC methods, are produced because of the misalignment between their transmitters and receiver coils. In addition, the diameter of the MTCWC is smaller than that of the STLC. The output power of the proposed system can charge the latest smartphone in the market, with generated output powers of 5 W (STLC) and 2 W (MTCWC). The above WPT methods are compared with other WPT methods in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据