4.5 Article

Loss of Ntrk2/Kiss1r Signaling in Oocytes Causes Premature Ovarian Failure

期刊

ENDOCRINOLOGY
卷 155, 期 8, 页码 3098-3111

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2014-1111

关键词

-

资金

  1. National Institutes of Health [HD24870, HD24870-ARRA, 8P51OD011092]
  2. Spanish Ministry of Economy and Science [BFI2011-25021]
  3. Marie Curie International Outgoing Fellowship within the seventh European Community Framework Programme (FP7)
  4. European Union funds from the European Funds for Regional Development (FEDER) program

向作者/读者索取更多资源

Neurotrophins (NTs), once believed to be neural-specific trophic factors, are now known to also provide developmental cues to non-neural cells. In the ovary, NTs contribute to both the formation and development of follicles. Here we show that oocyte-specific deletion of the Ntrk2 gene that encodes the NTRK2 receptor (NTRK2) for neurotrophin-4/5 and brain-derived neurotrophic factor (BDNF) results in post-pubertal oocyte death, loss of follicular organization, and early adulthood infertility. Oocytes lacking NTRK2 do not respond to gonadotropins with activation of phosphatidylinositol 3-kinase (PI3K)-AKT-mediated signaling. Before puberty, oocytes only express a truncated NTRK2 form (NTRK2.T1), but at puberty full-length (NTRK2.FL) receptors are rapidly induced by the preovulatory gonadotropin surge. A cell line expressing both NTRK2.T1 and the kisspeptin receptor (KISS1R) responds to BDNF stimulation with activation of Ntrk2 expression only if kisspeptin is present. This suggests that BDNF and kisspeptin that are produced by granulosa cells (GCs) of periovulatory follicles act in concert to mediate the effect of gonadotropins on Ntrk2 expression in oocytes. In keeping with this finding, the oocytes of NTRK2-intact mice fail to respond to gonadotropins with increased Ntrk2 expression in the absence of KISS1R. Our results demonstrate that the preovulatory gonadotropin surge promotes oocyte survival at the onset of reproductive cyclicity by inducing oocyte expression of NTRK2.FL receptors that set in motion an AKT-mediated survival pathway. They also suggest that gonadotropins activate NTRK2.FL expression via a dual communication pathway involving BDNF and kisspeptin produced in GCs and their respective receptors NTRK2.T1 and KISS1R expressed in oocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据