4.5 Article

Role of Calcium and EPAC in Norepinephrine-Induced Ghrelin Secretion

期刊

ENDOCRINOLOGY
卷 155, 期 1, 页码 98-107

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2013-1691

关键词

-

资金

  1. International Research Alliance
  2. Novo Nordisk Foundation Center for Basic Metabolic Research at the University of Copenhagen, Denmark
  3. National Institutes of Health [R01MH085298, R01DK078592, T32DA7290]
  4. Hilda and Preston Davis Foundation Post-doctoral Fellowship Program in Eating Disorders Research
  5. Grants-in-Aid for Scientific Research [24790941] Funding Source: KAKEN

向作者/读者索取更多资源

Ghrelin is an orexigenic hormone secreted principally from a distinct population of gastric endocrine cells. Molecular mechanisms regulating ghrelin secretion are mostly unknown. Recently, norepinephrine (NE) was shown to enhance ghrelin release by binding to beta 1-adrenergic receptors on ghrelin cells. Here, we use an immortalized stomach-derived ghrelin cell line to further characterize the intracellular signaling pathways involved in NE-induced ghrelin secretion, with a focus on the roles of Ca2+ and cAMP. Several voltage-gated Ca2+ channel (VGCC) family members were found by quantitative PCR to be expressed by ghrelin cells. Nifedipine, a selective L-type VGCC blocker, suppressed both basal and NE-stimulated ghrelin secretion. NE induced elevation of cytosolic Ca2+ levels both in the presence and absence of extracellular Ca2+. Ca2+-sensing synaptotagmins Syt7 and Syt9 were also highly expressed in ghrelin cell lines, suggesting that they too help mediate ghrelin secretion. Raising cAMP with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated ghrelin secretion, although such a cAMP-mediated effect likely does not involve protein kinase A, given the absence of a modulatory response to a highly selective protein kinase A inhibitor. However, pharmacological inhibition of another target of cAMP, exchange protein-activated by cAMP (EPAC), did attenuate both basal and NE-induced ghrelin secretion, where as an EPAC agonist enhanced basal ghrelin secretion. We conclude that constitutive ghrelin secretion is primarily regulated by Ca2+ influx through L-type VGCCs and that NE stimulates ghrelin secretion predominantly through release of intracellular Ca2+. Furthermore, cAMP and its downstream activation of EPAC are required for the normal ghrelin secretory response to NE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据